“大数据”近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。在本文中,整理了在中国境内活跃的大数据领域最具影响力的企业,它们有的是计算机或者互联网领域的巨头,有的则是刚刚创办不久的初创企业。大数据致店一把柒叁二零一泗贰五零,但它们有一个共同点,那就是它们都看到了大数据带来的大机会,并毫不犹豫地挺进了这个领域。首先来盘点一下那些提供大数据工具的老牌厂商,看看他们是如何利用自身优势地位冲击大数据领域,并将新产品及新方案推广到新一轮技术浪潮当中?

国内大数据营销成果,国内大数据营销成果分析

大数据是比云计算还要新兴的一个术语,但是从(表一)中列举的一些公司不难发现,在业内,大数据被科技企业看作是云计算之后的另一个巨大商机,包括IBM、微软、谷歌、亚马逊等一大批知名企业纷纷掘金这一市场;很多初创企业也开始加入到大数据的淘金队伍中,如Cloudera、Clustrix等。但纵观国内大数据服务提供商市场,大数据这一概念,对国内企业来说或许还稍显陌生,在最具影响力的前30家企业中,国内企业几乎还是一片空白,相对来说,国内大数据起步较晚,但依旧有些企业不遗余力的投入大数据这片蓝海,并且发展态势良好,下面就来盘点下大数据领域国内的主力阵营吧!国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如百度、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,对大数据进行分析的产品有哪些比较倍受青睐呢?而在这里面,最耀眼的明星当属Hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。我们就来看看以下十大企业级大数据分析利器吧。随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战,虽然我们已经进入大数据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据领域的热点。在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。

国内大数据营销成果分析

企业通过大数据分析可以收集、存储、处理和分析消费者的海量数据,从而挖掘出潜在的商业价值和市场机会。以下是企业如何通过大数据分析,提高营销效率的几种途径:

精准的客户画像:通过大数据分析,企业可以收集客户的各种数据,包括消费习惯、兴趣爱好、地理位置等,从而生成精准的客户画像,在营销活动中对不同客户进行个性化的推送和定位,提高营销效率。

消费者行为分析:通过大数据分析,企业可以对消费者进行行为分析,包括购物行为、搜索行为、社交媒体行为等,从而了解消费者的需求和偏好,为营销活动提供数据支持和指导。

营销效果评估:通过大数据分析,企业可以对营销活动的效果进行评估和优化,包括广告投放效果、销售转化率、客户满意度等,从而不断优化营销策略和活动,提高营销效率。

实时营销决策:通过大数据分析,企业可以实时监测市场和客户的变化,及时采取营销决策,包括价格调整、促销活动等,从而实现营销的灵活性和时效性。

企业通过大数据分析可以深入了解客户需求、掌握市场动态、提高营销效率,从而实现精准营销和增加销售业绩。

国内大数据营销成果有哪些

实现大数据营销的方式有哪些?

精准营销简单地说就是利用现代化的信息技术手段来实现个性化营销的活动,需要建立在精准定位和分析基础之上,运营商精准营销可以从以下几个方面进行。

大数据精准营销要解决的首要问题是数据整合汇聚。运营商目前运用大数据实现精准营销的一个重要挑战是数据的碎片化,即信息化系统各自为政。在许多信息化系统中,数据散落在互不连通的数据库中,相应的数据处理技术也存在于不同部门中,如何将这些孤立错位的数据库打通、互联、交换和共享,并且实现技术共享,才能够最大化大数据价值,实现精准营销。运营商首先要构建大数据交换共享平台,整合共享各信息化系统的数据,汇集用户在多个渠道上的行为数据,构建对用户行为和用户其他数据的深入洞察,一方面实时监控各渠道的用户行为特征、运营和营销的效果;另一方面集中用户的数据,便于后续的深入挖掘分析,实现以用户为中心的数据有效汇聚,提升用户数据价值,实现用户交互的精准识别和多渠道数据汇集,为用户提供更加准确的服务和营销策略。

建立系统化的大数据可视化关联分析系统。通过三维表现技术来展示复杂的大数据分析结果,支持多种异构数据源接入包括互联网与运营商本身海量数据外,还可以支持第三方接口数据、文本文件数据、传统数据库(如Oracle、SqlServer、MySQL等)数据、网页数据等数据源;支持数据可视化分析、数据挖掘运算法、预测性分析、语义引擎、高质量的数据管理等。借助人脑的视觉思维能力,通过挖掘数据之间重要的关联关系将若干关联性的可视化数据进行汇总处理,揭示出大量数据中隐含的规律和发展趋势,进一步提高大数据对精准营销的预测支撑能力。

如在美国的沃尔玛大卖场,当收银员扫描完顾客所选购的商品后,POS机上会显示出一些附加信息,然后售货员会友好提醒顾客:“我们商场刚进两三种配酒佳料,并正在促销,位于D5货架上,您要购买吗?”顾客也许会惊讶地说:“啊,谢谢你,我正想要,刚才一直没找到,那我现在再去买。”

这就是沃尔玛在大数据系统支持下实现“顾问式营销”的一个实例。因为大数据系统早就算计如果顾客的购物车中有不少啤酒、红酒和沙拉,则有80%的可能需要买配酒小菜、作料。而提供这一决策分析支持的就是其位于美国一个庞大的、通过卫星与全球所有卖场实时连通的企业级数据仓库。

第三,将大数据交换共享平台和现有的CRM系统打通。以前的CRM系统,只能促使分析报告回答“发生了什么事”,现在让CRM系统结合大数据平台,可以被用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,从而能判断“用户想要什么事发生”。对用户的需求进行细分,促使营销服务要做到精准分析、精准筛选、精准投递等要求。

第四,利用用户的各种社交工具实现精确营销和用户维系,可以利用关联分析等相关技术对用户社交信息进行分析,通过挖掘用户的社交关系、所在群体来提高用户的保有率,实现交叉销售和向上销售,基于社会影响和社交变化对目标用户进行细分,营销人员可识别社交网络中的“头羊”、跟随者以及其他成员,通过定义基于角色的变量,识别目标用户群中最有挖掘潜力的用户。

第五,对用户市场进行细分。这是运营商实现精准化营销的基础,不同于传统的市场划分,精准营销开展的市场细分要求根据用户的消费习惯、需求、行为规律等进行分析研究,然后据此进行市场细分,这就要求必须收集客户的显性和隐性方面的信息数据,利用大数据分析挖掘工具深入分析,绘制完整的用户视图,然后进行深层次的挖掘分析,定位目标市场,才能为运营商精准化营销提供依据。

第六,根据大数据挖掘分析的用户需求信息,进行产品或服务的量身定做。通过大数据精准营销缩短运营商与用户的沟通距离,实现一对一的精准化、个性化营销。随着移动互联网、大数据等技术的进步,运营商和用户的交流沟通更加个性化、虚拟化、网络化,沟通技巧也变得更加柔和,大数据精准化营销使得沟通变为直线最短距离,加强了沟通的效果。营销方式从海量业务广播式推送,过渡到一对一以用户体验为中心的业务精准实施。一对一精准营销面向用户在某一刻、以适合的价格,推送最需要的业务。围绕用户、业务场景、触点、营销推送内容、营销活动等,基于跨渠道触发式的营销,运营商在注重用户体验同时达到最佳的营销效果,并且可对营销过程进行全程跟踪,从而不断优化营销策略。

要以客户为导向重组市场营销流程,对市场营销全过程实施跟踪监管。传统的市场营销流程主要是以产品为中心,对市场的反应速度较慢,而且没有对市场营销活动的结果反馈进行改进,因而难以形成一个闭环。大数据时代的精准化营销,以客户为中心,从客户的需求着手,进行深入的洞察和分析,然后结合运营商自身的业务、品牌等进行市场营销活动的策划。在市场营销活动的过程中,还要根据市场变化、竞争对手的反应及用户反馈情况等内容及时调整营销策略。在市场营销活动开展一段时间后,要根据活动反馈结果适时做一些归纳和以便为下一个阶段市场营销活动策划打好基础。

未来对市场的争夺就是对客户资源的争夺,运营商如果能够有效利用自己手中大量的大数据资源,充分运用各种数据挖掘分析技术实现精准化的营销,就能深入挖掘新的市场价值,轻松应对任务重压,实现自身营销环节的优化演进,达到收入倍增的目的。